Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(2): 2940-2953, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38176105

RESUMEN

The diverse nature of optoelectronic properties of few-layer or monolayer MoS2 is generally dominated by A and B excitons. Occasionally, strong Coulombic interactions within the 2D monolayer led to the creation of hydrogen-like Rydberg states of excitons in MoS2 similar to other 2D monolayers. In this paper, a simple process is used to convert trilayer MoS2 films to a monolayer by introducing H2 gas during chemical vapor deposition. Remarkably, alongside the usual A, B excitons, and A- trion, the appearance of the Rydberg states is evidenced by photoluminescence spectra even at room temperature; also, there is an increase in their areal percentage with an increase in H2 content. The s-type excited Rydberg states up to the fourth order (n = 5) and third order (n = 4) of A and B excitons, respectively, have been probed from the photoluminescence spectra at 93 K. Unprecedentedly, the first-order derivative of room-temperature photocurrent spectrum reveals the Rydberg states concurrently and elaboratively. Furthermore, the large-area MoS2 films exhibit photoresponse in a broad UV to visible region with excellent photosensitivity (∼102) toward both UV and visible lights. Not only does this provide a profound understanding of the excitonic Rydberg states but also highlights the considerable potential of large-area monolayer MoS2 overcoming the difficulty of tiny flake-related 2D device endeavors.

2.
Phys Chem Chem Phys ; 24(38): 23858-23869, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36165193

RESUMEN

The evolution of various point defects in 100 keV lithium (Li) ion-implanted ZnO nanorods (NRs) by varying the fluences from 1 × 1014 to 7 × 1015 ions per cm2 has been investigated experimentally and using a simulation by stopping and range of ions in matter (SRIM). The X-ray photoelectron spectroscopy results indicate that the Li1+ ions have been incorporated at Zn2+ sites, which forms LiZn acceptors in the implanted NRs. The structural disorder and the number of oxygen vacancies in the implanted ZnO NRs increase drastically with an increase in the Li fluence as indicated by the X-ray diffractometry and Raman scattering analyses. Both the formation of acceptors and implantation-induced defects make the Li-implanted NRs electrically highly resistive. The yellow-orange photoluminescence (PL) emission of the as-grown ZnO NRs has evolved into green emission in the implanted NRs. A suppression of the green PL at higher fluences is possibly due to an apparent decrease in the zinc vacancy concentration. The SRIM results explain the quantitative energy loss, the distributions of the implanted Li ions and the point defects along the target ZnO NRs. The consistency between the experimental and theoretical simulations validates our analyses on the formation and evolution of various point defects in highly resistive Li-implanted ZnO NRs.

3.
ACS Omega ; 4(1): 1364-1374, 2019 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-31459404

RESUMEN

TiO2 nanorods (NRs) have generated much interest for both fundamental understanding of defect formation and technological applications in energy harvesting, optoelectronics, and catalysis. Herein, we have grown TiO2 NR films on glass substrates using a self-seeded approach and annealed them in H2 ambient to modify their surface defects. It has been shown that broad-band photosensing properties of Au/self-seeded TiO2 NR/Au-based two back-to-back Schottky junctions (SJs) for a broad wavelength of light are much superior as compared to those of the pristine and the control samples. Photoresponsivity values for the H2-annealed sample are 0.42, 0.71, 0.07, and 0.08 A/W for detecting, respectively, 350, 400, 470, and 570 nm lights. Very low dark current and high photocurrent lead to a gain value as high as 1.85 × 104 for 400 nm light. Unprecedentedly modified NR-based SJs show excellent photoresponsivity for detecting as low as 25, 36, 48, and 28 µW/cm2 power densities of 350, 400, 470, and 570 nm lights, respectively. It is found that Ti3+ defects play a key role in an efficient photoelectron transfer from TiO2 to Au. Our work, for the first time, highlights the simplicity and reveals the rationale behind the excellent properties of Au/self-seeded TiO2 NR film/Au back-to-back SJs.

4.
J Colloid Interface Sci ; 523: 245-253, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29626762

RESUMEN

In the present scenario of energy crisis, it is inevitable to focus on the low powered or self-powered devices. Multi-spectral photoresponse is an additional advantage to the above feature. We have developed an efficient self-powered photodetector with broad wavelength detection range based on heterostructures of two wide band-gap materials ZnO and ZnS. More than two orders higher responsivity and 'ON/OFF' ratio has been observed in case of heterostructure sample as compared to pristine ZnO. On the basis of the controlled experimental results, it has been established that the interfacial surface engineering, can be useful to improve the visible response and a significant photovoltaic performance under visible light illumination can be achieved. Unlike the other recent reports on self-powered UV-visible photodetector, we have achieved two order higher visible response without compromising the UV photoresponse. Unprecedented broad wavelength photodetection in self-powered mode in the present study highlights the uniqueness and advantage of an interface in a core-shell heterostructure for photodetection applications.

5.
J Phys Chem Lett ; 8(19): 4960-4966, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28944675

RESUMEN

For halide perovskite solar cells (PSCs) to fulfill their vast potential for combining low-cost, high efficiency, and high throughput production they must be scaled using a truly transformative method, such as roll-to-roll processing. Bringing this reality closer to fruition, the present work demonstrates flexible perovskite solar cells with 18.1% power conversion efficiency on flexible Willow Glass substrates. We highlight the importance of the transparent conductive oxide (TCO) layers on device performance by studying various TCOs. While tin-doped indium oxide (ITO) and indium zinc oxide (IZO) based PSC devices demonstrate high photovoltaic performances, aluminum-doped zinc oxide (AZO) based devices underperformed in all device parameters. Analysis of X-ray photoemission spectroscopy data shows that the stoichiometry of the perovskite film surface changes dramatically when it is fabricated on AZO, demonstrating the importance of the substrate in perovskite film formation.

6.
ACS Appl Mater Interfaces ; 8(50): 34506-34512, 2016 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-27998148

RESUMEN

Organic-inorganic hybrid diodes are very promising for solution processing, low cost, high performance optoelectronic devices. Here, we report a high quality p-n heterojunction diode composed of n-type inorganic Sb2S3 and p-type organic 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD) with a rectification ratio of ∼102 at an applied bias of 1 V. On illumination with visible light (470 nm, 1.82 mW/cm2), the current value in our device becomes 8 × 102 times that of its dark value even at a zero bias condition. The estimated responsivity value at zero bias is 0.087 A/W which is so far the highest reported for any organic-inorganic hybrid photodiode, to the best of our knowledge. It also exhibits a fast photoresponse time of <25 ms (instrumental limit). More importantly, our device can also detect visible light with power density as low as 8 µW/cm2 with a photocurrent density of 1.2 µA/cm2 and a photocurrent to dark current ratio of more than 8. We also demonstrate that the values of responsivity, short circuit current, and open circuit voltage of the photodetector can be improved significantly using a thin layer of TiO2 hole-blocking layer. These findings suggest Sb2S3/spiro-OMeTAD heterojuncton as a promising candidate for efficient self-powered low visible light photodetector.

7.
Dalton Trans ; 45(22): 9103-12, 2016 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-27163693

RESUMEN

In recent times, a great deal of attention has been paid to the balanced design and fabrication of core-shell heterostructures for enhanced pseudocapacitor (SC) performance. In this paper, we report the synthesis of ZnO@Co3O4 based core-shell heterostructures with controllable shell thickness for the first time by a simple low-temperature solution-based method and their detailed electrode performance as SC wherein a highly enhanced pseudocapacitance of 296 C g(-1) at a current density of 0.5 A g(-1) has been observed. Further, modifying the surface of ZnO by its sulfur analogue (i.e., by creating a ZnO/ZnS heterostructure), an improved capacitance of 317 C g(-1) at a current density of 0.5 A g(-1) for ZnO/ZnS@Co3O4 has been obtained along with a better rate performance. This is attributed to an efficient charge transfer from ZnS to ZnO. Impressively, the core-double shell heterostructure exhibits high energy density of 36 Wh kg(-1) at a power density of 204.3 W kg(-1). Even at a very high power density of 10.9 kW kg(-1), it shows an energy density of 14.7 Wh kg(-1). To the best of our knowledge, this is the first study of the electrochemical properties of ZnO/ZnS@Co3O4 heterostructure.

8.
ACS Appl Mater Interfaces ; 7(30): 16322-9, 2015 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-26154060

RESUMEN

On the face of the impending energy crisis, developing low-energy or even zero-energy photoelectronic devices is extremely important. A multispectral photosensitivity feature of a self-powered device provides an additional powerful tool. We have developed an unprecedented high performance dual wavelength self-powered ZnO@CdS/PEDOT:PSS core-shell nanorods array photodetector through a simple aqueous chemical method wherein a suitable band alignment between an intelligent material pair, i.e. ZnO and CdS, has been utilized. Besides a noteworthy advantage of the devices being that they show a very sharp and prominent dual wavelength photosensitivity, both the ultraviolet and visible light sensitivity (ratio of current under illumination (Iphoto)/current under dark (Idark)) of the device are two orders of higher magnitude than those of pristine ZnO, attaining values of 2.8 × 10(3) and 1.07 × 10(3), respectively. At the same time, temporal responses faster than 20 ms could be achieved with these solution-processed photodetectors. The present study provides a very important direction to engineer core-shell nanostructured devices for dual wavelength high photosensitivity.

9.
Phys Chem Chem Phys ; 16(13): 6041-9, 2014 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-24554121

RESUMEN

Self-assembled bolaamphiphilic perylene bisimide (PBI) containing an amino acid appended fluorescent semiconducting soft material (hydrogel) has been discovered at physiological pH. This new organic material based on self-assembled perylene bisimide appended amino acid-based bolaamphiphile (PBI-C11-Y) has been well characterized using various techniques including UV-Vis, fluorescence, X-ray diffraction, FT-IR, transmission electron microscopic (TEM) and atomic force microscopic (AFM) studies. Interestingly, the UV-Vis absorption properties of the soft-material are dependent on the pH of the medium. This PBI-conjugated amino acid appended gelator molecule contains a centrally located perylene bisimide moiety as well as an aromatic amino acid l-tyrosine at the side chains, which are extremely useful for interacting with the delocalized large π-surface of GO (graphene oxide) or RGO (reduced graphene oxide) to form a GO/RGO containing hybrid hydrogel. Graphene oxide and reduced graphene oxide have been successfully incorporated into the nanofibrillar network structure of the PBI-C11-Y based gel to make nanohybrid systems. The I-V profile of the semiconducting photo-responsive soft-material of the PBI-C11-Y has been successfully tuned upon the incorporation of GO and RGO within the gel-based soft material. This PBI-C11-Y xerogel based structure shows photo-switching behaviour upon exposure to white light. The ON/OFF ratio of the PBI-C11-Y can be modulated upon the inclusion of GO and RGO within the hydrogel matrix. Furthermore, the OFF state stability of the PBI-C11-Y xerogel material has been increased upon the inclusion of RGO. Regulation of the photo-switching behaviour of the PBI-C11-Y based xerogel holds promise for making PBI-containing amino acid appended biomaterials with interesting properties in future.


Asunto(s)
Aminoácidos/química , Furanos/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Piridonas/química , Grafito/química , Concentración de Iones de Hidrógeno , Imidas/química , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Óxidos/química , Perileno/análogos & derivados , Perileno/química , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier
10.
ACS Appl Mater Interfaces ; 4(5): 2709-16, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22551247

RESUMEN

The well-ordered metal oxide nanostructures can be synthesized successfully, but the conductance of these structures is limited, which is a disadvantage for applying these in photovoltaic and display devices. Conductivity of a semiconductor can be improved by using metal doping, but the issue becomes a major challenge in nanostructures since their high surface energy usually hinders any metal doping process. Here we show an entirely new metal-free doping strategy to enhance the current conduction of ZnO nanorods' (NRs) arrays through a sulphidation technique. The process is based on the electronegativity difference between S and O because of which one can expect a rigorous bond rearrangement at the interface and a ZnOS-ZnS composite is formed as O is being partially replaced by S. The current conduction by the metal oxide NRs arrays is significantly enhanced by nearly 4 orders of magnitude without sacrificing the transparency of the NRs arrays. The increased current conduction is assigned due to an increase in the Zn(i) concentration as evidenced from the electron paramagnetic resonance measurements. The composite layer grown on p-Si forms a photodiode which is highly sensitive to visible light with a very fast response time.

11.
J Nanosci Nanotechnol ; 11(9): 7735-43, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22097481

RESUMEN

The steady state and time resolved spectroscopic studies reveal that two xanthene dyes Rhodamine 6G (R6G) and Rhodamine B (RB), used in the present investigations, form ground state hydrogen -bonded complexes with meso-tetrakis(4-carboxyphenyl) porphyrin (TCPP). However, it is apparent that upon photoexcitation the H-bonding complexes formed in the ground state decompose into the individual reacting components. This presumption was confirmed from the observation of the presence of only static quenching mode in the steady state fluorescence of the dyes in presence of porphyrin. The photoelectrochemical properties of the free dyes and the mixtures of each dye with porphyrin are investigated by measuring incident photon-to-current conversion efficiency (IPCE) using ZnO electrode and also with TiO2 electrode. It is seen that Rhodamine B-porphyrin mixture has attained maximum IPCE among the four samples studied at approximately 550 nm using ZnO electrode. Using TiO2 electrode, slight improvement in the value of IPCE was found for the same mixture. Therefore Rhodamine B-porphyrin mixture may act as a good sensitizer for converting solar energy to electrical energy.

12.
Nanoscale ; 3(10): 4427-33, 2011 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-21931902

RESUMEN

Information on the mechanistic differences in the luminescence properties of Ti/ZnO nanorods (NRs) has been obtained through the preparation of heterostructures by (a) varying the thickness of Ti from 1 nm to 20 nm keeping the substrate temperature at 400 °C, (b) varying the substrate temperature from room temperature (RT) to 500 °C while keeping the metal thickness constant at 10 nm and (c) annealing the RT Ti sputtered NRs at temperatures of 400 °C and 500 °C. The photoluminescence (PL) spectra show that the near band edge luminescence of ZnO in the ultraviolet (UV) region is enhanced as the thickness of Ti increases up to 5 nm and, thereafter, it falls. Sputtering of Ti on ZnO NRs at RT does not cause any UV enhancement but when sputtered at and above 400 °C, the UV intensity is enhanced. Annealing of RT Ti sputtered NRs at and above 400 °C also results in the enhancement of the UV peak, although with a lesser magnitude. Analysis of the PL results, supported by X-ray diffraction, field emission scanning electron microscopy, elemental mapping, high resolution transmission electron microscopy, Fourier transform infrared spectroscopy and electrical I-V measurement results, show a clear indication that the surface diffusion of Ti causes a reduction in the surface defects.


Asunto(s)
Nanotubos/química , Titanio/química , Óxido de Zinc/química , Difusión , Nanotubos/ultraestructura , Espectrofotometría Ultravioleta , Propiedades de Superficie , Temperatura
13.
J Colloid Interface Sci ; 364(1): 10-7, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21911220

RESUMEN

Semiconductors in the form of composite yields immense possibilities for the study of charge transfer processes at the interface. We have designed CdS nanoparticles (NPs) capped ZnO nanostructures using two morphologies of the latter namely nanorods arrays (NRAs) and nanocrystalline film to form a composite NRAs and composite films respectively. The photocurrent values in both the composites have been increased but to a different extent when these are illuminated with the ultraviolet (UV) light. More interestingly, the resultant UV photosensitivity in the composite NRAs is decreased while that in the composite films is increased as compared to the values of the respective uncapped samples. A different charge transfer process at the interface is occurred due to the difference in the morphologies resulting in a contrast change in the UV sensitivity. The photoluminescence results also show that the change in the emission property is morphology-dependent. Therefore, our results imply that the choice of the morphology while making a nanocomposite is crucial to tune its UV sensitivity as well as optical properties.


Asunto(s)
Compuestos de Cadmio/química , Nanocompuestos/química , Sulfuros/química , Rayos Ultravioleta , Óxido de Zinc/química , Mediciones Luminiscentes , Membranas Artificiales , Tamaño de la Partícula , Propiedades de Superficie
14.
Nanotechnology ; 22(26): 265501, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21576786

RESUMEN

ZnO nanowires (NWs) have been decorated with Pd nanoparticles of sizes less than 10 nm (Pd-ZnO NWs) via a chemical solution route. The microstructural characterizations have been done using field emission scanning electron and high-resolution transmission electron microscopes. The effects of attaching Pd nanoparticles to the walls of ZnO NWs have been investigated by studying the ultraviolet (UV) photosensitivity and photoluminescence (PL) properties. The surface-modified NWs show a UV photosensitivity more than double and a response seven times faster compared to the bare NWs. The photocarrier relaxation under the steady UV illumination condition is quite different in Pd-ZnO NWs. The higher and faster photosensitivity has been explained on the basis of photocarrier transfer from the conduction band of ZnO to the Fermi level of Pd and subsequent electron trapping by the adsorbed O(2) molecules on the NWs' surface, which have been presented through a proposed model. The PL spectrum of Pd-ZnO NWs shows that the intensities of the band-edge and defect-related emissions decrease and increase, respectively, due to Pd anchoring, the effect being pronounced as the density of Pd nanoparticles increases.

15.
Nanoscale ; 3(5): 2336-41, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21483939

RESUMEN

Core-shell TiO(2)@ZnO nanorods (NRs) have been fabricated by a simple two step method: growth of ZnO NRs' array by an aqueous chemical technique and then coating of the NRs with a solution of titanium isopropoxide [Ti(OC(3)H(7))(4)] followed by a heating step to form the shell. The core-shell nanocomposites are composed of single-crystalline ZnO NRs, coated with a thin TiO(2) shell layer obtained by varying the number of coatings (one, three and five times). The ultraviolet (UV) emission intensity of the nanocomposite is largely quenched due to an efficient electron-hole separation reducing the band-to-band recombinations. The UV photoconductivity of the core-shell structure with three times TiO(2) coating has been largely enhanced due to photoelectron transfer between the core and the shell. The UV photosensitivity of the nanocomposite becomes four times larger while the photocurrent decay during steady UV illumination has been decreased almost by 7 times compared to the as-grown ZnO NRs indicating high efficiency of these core-shell structures as UV sensors.


Asunto(s)
Nanoestructuras/química , Nanoestructuras/efectos de la radiación , Fotometría/instrumentación , Titanio/química , Óxido de Zinc/química , Óxido de Zinc/efectos de la radiación , Ensayo de Materiales , Nanoestructuras/ultraestructura , Tamaño de la Partícula , Titanio/efectos de la radiación , Rayos Ultravioleta
16.
J Colloid Interface Sci ; 353(1): 30-8, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-20947091

RESUMEN

ZnO nanoparticles in the form of quantum dots (QDs) have been dispersed in SiO(2) matrix using StÖber method to form ZnO QDs-SiO(2) nanocomposites. Addition of tetraethyl orthosilicate (TEOS) to an ethanolic solution of ZnO nanoparticles produces random dispersion. On the other hand, addition of ZnO nanoparticles to an already hydrolyzed ethanolic TEOS solution results in a chain-like ordered dispersion. The photoluminescence spectra of the as-grown nanocomposites show strong emission in the ultraviolet region. When annealed at higher temperature, depending on the sample type, these show strong red or white emission. Interestingly, when the excitation is removed, the orderly dispersed ZnO QDs-SiO(2) composite shows a very bright blue fluorescence visible by naked eyes for few seconds indicating their promise for display applications. The emission property has been explained in the light of structure-property relationship.

17.
Anal Chim Acta ; 674(1): 96-101, 2010 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-20638505

RESUMEN

New wormhole-like mesoporous TiO(2) material has been synthesized through a convenient sol-gel method in the presence of a Schiff base secondary amine hexadecyl-2-pyrrole-methylamine (HPMA) containing chelating donor sites as template or structure directing agent (SDA). SDA molecules can be easily removed from the composite to generate mesoporosity and upon removal of the SDA molecule, this mesoporous TiO(2) material showed very high surface area (480+/-10 m(2)/g) with an average pore diameter of 2.57+/-0.05 nm. When Rose Bengal dye is entrapped inside the nanopores of this material, it showed a drastic enhancement (ca. 40-folds) in the photoconductivity vis-à-vis mesoporous TiO(2) alone under white light illumination.


Asunto(s)
Rosa Bengala/química , Titanio/química , Metacrilatos/química , Estructura Molecular , Tamaño de la Partícula , Fotoquímica , Porosidad , Bases de Schiff/química , Propiedades de Superficie
18.
ACS Appl Mater Interfaces ; 2(2): 408-12, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20356186

RESUMEN

ZnO nanowires (NWs) with a ZnS coating are synthesized in order to modify the surface without changing the diameter of the NWs. They have the wurtzite ZnO at the core and a cubic ZnS at the outer layer. The NWs show a sharp ultraviolet and a broad visible emission of the photoluminescence spectra. Surface modification has led to a change in the position of the maxima of the visible emission in ZnO-ZnS NWs. The photocarrier relaxation under steady UV illumination occurs in ZnO NW arrays but is absent in ZnO-ZnS NW arrays. The dark current value for both type of NWs are similar, whereas the photocurrent value is much higher in the surface-modified NWs. Higher photocurrent value indicates a transport of the photogenerated carriers from the ZnS layer to ZnO during UV illumination. The carrier transport mechanism is proposed through a model.


Asunto(s)
Mediciones Luminiscentes/métodos , Nanotubos/química , Nanotubos/efectos de la radiación , Fotoquímica/métodos , Compuestos de Selenio/química , Compuestos de Zinc/química , Óxido de Zinc/química , Conductividad Eléctrica , Instalación Eléctrica , Luz , Ensayo de Materiales , Nanotecnología/métodos , Nanotubos/ultraestructura
19.
Chemphyschem ; 11(8): 1774-9, 2010 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-20235113

RESUMEN

We report the controlled growth of ZnO quantum dots (QDs) on the sidewalls of multiwalled carbon nanotubes (MWCNTs) by a one-step process and study the effect on the photoluminescence (PL) properties of the ZnO QDs-MWCNT composite. The PL intensity of the composite is quenched and the lifetime is reduced compared to the only ZnO QDs. The origin of the PL quenching is discussed in terms of energy transfer, which is examined by varying the density and size of ZnO QDs by changing the molar concentration of the precursor solution for ZnO and the amount of MWCNT.

20.
Nanotechnology ; 20(47): 475602, 2009 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-19858559

RESUMEN

We have demonstrated a novel and simple low-cost method to grow beaded nanochains of ZnO using an aqueous chemical growth method. Whatman filter paper (40) is used as the template. The filter paper is generally made up of cellulose fibers along which the growth of beaded ZnO nanoparticles (NPs) is initiated. When the filter paper is burnt at 700 degrees C temperature, the NPs appear as a beaded nanochain morphology while those synthesized without the filter paper form lumped nanostructures without any regular shape and size. A model has been proposed to explain the growth mechanism. A sharp and strong green emission has been observed for the template-grown sample in contrast to a broad and less intense hump of the without template-grown sample. The beaded nanochains shows 64% photocatalytic degradation of methyl orange (MO) under UV irradiation, which is much superior to a value of only 22% shown by the lumped sample. Not only can this low-cost simple template-based synthesis be applied to grow other nanostructures of similar morphology but is also promising for enhancing the properties in the multifunctional materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...